Separable Statistics in Linear Cryptanalysis

Igor Semaev, Univ. of Bergen, Norway

joint work with Stian Fauskanger

5 September 2017, MMC workshop

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Round Block Cipher Cryptanalysis

Logarithmic Likelihood Ratio(LLR) Statistic

- \blacktriangleright To distinguish two distributions with densities $P(x)$, $Q(x)$
- by independent observations $\nu_1, ..., \nu_n$
- \triangleright Most powerful criteria(Neyman-Pearson lemma):
- accept $P(x)$ if

$$
\sum_{i=1}^{n} \ln \frac{P(\nu_i)}{Q(\nu_i)} > \text{threshold}
$$

 \blacktriangleright left hand side function is called LLR statistic

LLR Statistic for large (X, Y) ?

- Approximate distribution of (X, Y) depends on some bits of $K2, ... K15$
- \triangleright Observation on (X, Y) depends on some bits of K1, K16
- \triangleright \overline{K} key-bits which affect distribution and observation
- For large (X, Y) LLR statistic depends on many key-bits \bar{K}
- \triangleright Conventional Multivariate Linear Cryptanalysis not efficient:
- \blacktriangleright 2 $^{|\bar{K}|}$ computations of the statistic to range the values of \bar{K}

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- ▶ Our work: $<< 2^{|{\bar{K}}|} (\approx 10^3$ times faster in DES)
- \blacktriangleright by using a new statistic
- \triangleright which reflects the structure of the round function
- \triangleright that has a price to pay, but trade-off is positive

LLRs for Projections

- \blacktriangleright $(h_1, ..., h_m)$ some linear projections of (X, Y) such that
- \blacktriangleright distr/observ of h_i depends on a lower number of key-bits \bar{K}_i
- \blacktriangleright happens for modern ciphers with small S-boxes
- \triangleright Vector (LLR₁, ..., LLR_m) asymptotically distributed
- \triangleright N($n\mu$, nC) if the value of \overline{K} is correct
- \triangleright and close to $N(-n\mu, nC)$ if the value of \overline{K} is incorrect
- **In** mean vector μ , covariance matrix C, number of plain-texts n

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

Separable Statistics

- I LLR statistic S to distinguish two normal distributions
- \blacktriangleright quadratic, but in our case degenerates to linear
- $\blacktriangleright \; S(\bar K,\nu) = \sum_{i=1}^m S_i(\bar K_i,\nu_i),$ where $S_i = \omega_i\, LLR_i$
- \triangleright ω_i weights, ν observation on (X, Y) , and ν_i observation on h_i
- ▶ S distributed $N(a, a)$ if $\overline{K} = k$ correct
- ► close to $N(-a, a)$ if $\overline{K} = k$ incorrect, for an explicit a
- \triangleright For polynomial schemes the theory of separable statistics was developed by Ivchenko, Medvedev,.. in 1970-s
- Problem: find $\overline{K} = k$ such that $S(k, \nu) >$ threshold without brute force

KORK (FRAGE) EL POLO

Reconstruct a set of \bar{K} -candidates k

ighthroapoontal find solutions $\bar{K} = k$ to (linear for DES) equations

$$
\begin{cases} \bar{K}_i &= k_i \text{ with weight } S_i(k_i, \nu_i) \\ i &= 1, ..., m \end{cases}
$$

- Such that $S(k, \nu) = \sum_{i=1}^{m} S_i(k_i, \nu_i) >$ threshold
- \blacktriangleright the system is sparse: $|\bar K|$ is large, but $|\bar K_i| << |\bar K|$
- \triangleright Walking over a search tree
- \blacktriangleright Algorithm first appears in I. Semaev, New Results in the Linear Cryptanalysis of DES, Crypt. ePrint Arch., 361, May 2014
- \triangleright We compute success rate and the number of wrong solutions
- In that is \overline{K} -candidates to brute force

Reconstruction Toy Example

find x_1, x_2, x_3 s.t.

 $S(x_1, x_2, x_3) = S_1(x_1 + x_2, x_3) + S_2(x_1 + x_3) + S_3(x_1, x_2 + x_3) > 1$

KORKA SERKER ORA

Solutions 010, 111

Implementation for 16-Round DES

- \triangleright 2 strings of 14 internal bits each (or a 28-bit string)
- \blacktriangleright 54 key-bits involved
- \triangleright we use 28 of 10-bit projections, each involves \approx 20 key-bits

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- \triangleright two separable statistics, one for each 14-bit string
- \triangleright success probability 0.85(theoretically)
- ighthronorpoonup number of (56-bit key)-candidates is $2^{41.8}$ (theoretically&empirically) for $n=2^{41.8}$
- \triangleright search tree complexity is about the same

Further Talk Outline

 \triangleright Formulae for internal bits probability distribution

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \triangleright Construction of the statistic S
- \blacktriangleright Search tree algorithm
- \blacktriangleright Implementation details for 16-round DES

Probability of events in encryption(a priori distribution)

- \triangleright Z vector of some internal bits in the encryption algorithm
- ightharpoonup via vertice $Pr(Z = A)$ over all possible A
- \triangleright that makes a distribution of Z
- \triangleright More generally, $\mathsf{Pr}(\mathcal{E})$ for some event $\mathcal E$ in the encryption

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Notation: one Feistel round

イロト イ部 トイ君 トイ君 トッ 君の

 2990

- \blacktriangleright in DES
- \blacktriangleright X_{i-1} , X_i are 32-bit blocks
- \blacktriangleright K_i is 48-bit round key
- \blacktriangleright sub-key of the main 56-bit key

Prob. Description of r-round Feistel (for SPN similar)

- $\triangleright X_0, X_1, \ldots, X_{r+1}$ random independently uniformly generated m-bit blocks
- \blacktriangleright Main event C defines DES:

$$
X_{i-1}\oplus X_{i+1}=F_i(X_i,K_i),\quad i=1,\ldots,r
$$

 K_1, \ldots, K_r fixed round keys

 \blacktriangleright Then

$$
\mathsf{Pr}(\mathcal{E}|\mathcal{C}) = \frac{\mathsf{Pr}(\mathcal{EC})}{\mathsf{Pr}(\mathcal{C})} = 2^{mr} \mathsf{Pr}(\mathcal{EC}).
$$

KORK ERKER ADE YOUR

 \blacktriangleright likely depends on all key-bits.

Approximatie Probabilistic Description

- \triangleright We want **approximate** probability of \mathcal{E} in the encryption
- ► Choose a larger event $\mathcal{C}_{\alpha} \supseteq \mathcal{C}$:

 $\mathsf{Pr}(\mathcal{E}|\mathcal{C}) \approx \mathsf{Pr}(\mathcal{E}|\mathcal{C}_\alpha) = \frac{\mathsf{Pr}(\mathcal{EC}_\alpha)}{\mathsf{Pr}(\mathcal{C}_\alpha)}$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- **Pr**($\mathcal{E}|\mathcal{C}_{\alpha}$) may depend on a lower number of key-bits
- \blacktriangleright Easier to compute and use

 \blacktriangleright

How to Choose \mathcal{C}_{α}

 \triangleright To compute the distribution of the random variable

$$
Z = X_0[\alpha_1], X_1[\alpha_2 \cup \beta_1], X_r[\alpha_{r-1} \cup \beta_r], X_{r+1}[\alpha_r]
$$

 \blacktriangleright ($X[\alpha]$ sub-vector of X defined by α), we choose trail

$$
X_i[\beta_i], F_i[\alpha_i], \quad i=1,\ldots,r
$$

• and event \mathcal{C}_{α} :

 $X_{i-1}[\alpha_i] \oplus X_{i+1}[\alpha_i] = F_i(X_i, K_i)[\alpha_i], \quad i = 1, \ldots, r.$ \blacktriangleright Pr(\mathcal{C}_{α}) = 2⁻ $\sum_{i=1}^{r} |\alpha_i|$

Regular trails

 \blacktriangleright trail

$$
X_i[\beta_i], F_i[\alpha_i], \quad i=1,\ldots,n
$$

 \blacktriangleright is called regular if

$$
\gamma_i\cap(\alpha_{i-1}\cup\alpha_{i+1})\subseteq\beta_i\subseteq\gamma_i,\quad i=1,\ldots,n.
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

- \blacktriangleright $X_i[\gamma_i]$ input bits relevant to $F_i[\alpha_i]$
- For regular trails $Pr(Z = A | \mathcal{C}_{\alpha})$ is computed with a convolution-type formula, only depends on α_i

Convolution Formula

►
$$
Z = X_0[\alpha_1], X_1[\alpha_2 \cup \beta_1], X_r[\alpha_{r-1} \cup \beta_r], X_{r+1}[\alpha_r]
$$

\n► $\Pr(Z = A_0, A_1, A_r, A_{r+1}|\mathcal{C}_{\alpha}) =$
\n
$$
\frac{2^{\sum_{i=2}^{r-1} |\alpha_i|}}{2^{\sum_{i=1}^{r} |(\alpha_{i-1} \cup \alpha_{i+1}) \setminus \beta_i|}} \sum_{A_2,...,A_{r-1}} \prod_{i=1}^{r} \mathbf{q}_i(A_i[\beta_i], (A_{i-1} \oplus A_{i+1})[\alpha_i], k_i),
$$

 \triangleright probability distribution of round sub-vectors

$$
\mathbf{q}_i(b,a,k) = \mathbf{Pr}(X_i[\beta_i] = b, F_i[\alpha_i] = a | K_i[\delta_i] = k_i)
$$

- \blacktriangleright $K_i[\delta_i]$ key-bits relevant to $F_i[\alpha_i]$
- \triangleright Corollary: compute iteratively by splitting encryption into two parts. Few seconds for 14-round DES

Theoretical(red) vs Empirical(green) Distributions

- \blacktriangleright $X_2[24, 18, 7, 29], X_7[16, 14], X_8[24, 18, 7, 29]$
- Emp. with 2^{39} random pl-texts for one randomly chosen key

 $-1.77 - 6.$ - 45 \sim つへへ

Approximate Distribution of a Vector from 14-round DES

- \blacktriangleright X_2 [24, 18, 7, 29], X_{15} [16, 15, .., 11], X_{16} [24, 18, 7, 29]
- \triangleright computed with the trail

 \blacktriangleright depends on 7 key-bits:

 $\mathcal{K}_{\{3,5,7,9,11,13\}}[22]\oplus\mathcal{K}_{\{4,8,12\}}[44],\mathcal{K}_{15}[23,22,21,20,19,18].$

KORKAR KERKER EL VOLO

▶ notation $K_{\{4,8,12\}}[44] = K_4[44] \oplus K_8[44] \oplus K_{12}[44]$

Another Approximation to the Same Distribution

- ▶ same $X_2[24, 18, 7, 29]$, $X_{15}[16, 15, ..., 11]$, $X_{16}[24, 18, 7, 29]$
- \triangleright with another trail

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- \blacktriangleright different distribution
- \triangleright quadratic imbalance is negligibly larger
- \triangleright but depends on a much larger number of the key-bits

Conventional LLR statistic

 \triangleright We use 28 internal bits in the analysis of DES:

 X_2 [24, 18, 7, 29], X_{15} [16, 15, .., 11], X_{16} [24, 18, 7, 29] $X_1[24, 18, 7, 29], X_2[16, 15, \ldots, 11], X_{15}[24, 18, 7, 29]$

- \triangleright distribution and observation depend on available plain-text/cipher-text and 54 key-bits
- \triangleright conventional LLR statistic takes 2^{54} computations
- no advantage over Matsui's 2^{43} complexity for breaking DES

AD A 4 4 4 5 A 5 A 5 A 4 D A 4 D A 4 P A 4 5 A 4 5 A 5 A 4 A 4 A 4 A

Attack

 \triangleright We used 28 projections(*i*, *j* ∈ {16, .., 11}):

 X_2 [24, 18, 7, 29], $X_{15}[i, j]$, $X_{16}[24, 18, 7, 29]$ $X_1[24, 18, 7, 29], X_2[i, j], X_{15}[24, 18, 7, 29]$

- Except $i = 16$, $j = 11$, where the distributions are uniform
- \triangleright For each projection LLR statistic depends on (\leq 21) key-bits

KORKAR KERKER EL VOLO

- \triangleright We constructed two new separable statistics for two independent bunches of the projections
- \triangleright and combined (\leq 21)-bit values to find a number of candidates for 54-bit sub-key
- \blacktriangleright brute force those candidates

Separable Statistics in Details

- **D** observation $\nu = (\nu_1, \ldots, \nu_m)$ on m projections (h_1, \ldots, h_m)
- \blacktriangleright ν_i depends on plain/cipher-texts and \bar{K}_i
- \blacktriangleright best statistic is approx. separable: $S(\bar K, \nu) = \sum_{i=1}^m S_i(\bar K_i, \nu_i)$
- \blacktriangleright $S_i(\bar{K}_i, \nu_i)$ weighted LLR statistics for $h_i(\mathrm{x})$
- ► Construct \bar{K} -values (s.t. $\sum_{i=1}^{m} S_i(\bar{K}_i, \nu_i) >$ threshold) from \bar{K}_i -values

KORKAR KERKER EL VOLO

 \triangleright One computes error probabilities etc., details are below

Separable Statistic Construction

- \triangleright x may have distribution Q or P. Projection $h_i(x)$ may have Q_i or P_i $i = 1, ..., m$
- \blacktriangleright n plain/cipher-texts
- ► LLR statistic for h_i : $LLR_i = \sum_b \nu_{ib} \ln \left(\frac{q_{ib}}{p_{ib}}\right)$
- \blacktriangleright (LLR₁, ..., LLR_m) normally distributed
- \blacktriangleright N($n\mu_Q$, nC_Q) or N($n\mu_P$, nC_P)
- ► If Q is close to P, then $\mu_{\mathcal{Q}} \approx -\mu_{\mathcal{P}}$ (follows from Baigneres et al. 2004) and $C_Q \approx C_P(\text{this work})$

KORKAR KERKER EL VOLO

 \triangleright We get $N(n\mu, nC)$ or $N(-n\mu, nC)$

Construct Separable Statistics 1

- \triangleright assume non-singular C, always the case in our analysis of DES
- \triangleright To distinguish $N(-n\mu, nC)$, $N(n\mu, nC)$ we use LLR statistic S
- \blacktriangleright which degenerates to linear

$$
S = \left(\frac{C^{-1}\mu}{n}\right)(LLR_1,\ldots,LLR_m)^T
$$

KORKAR KERKER EL VOLO

 \blacktriangleright So that $S(\bar K, \nu) = \sum_{i=1}^m S_i(\bar K_i, \nu_i),$ where $S_i = \omega_i L L R_i$

► weights ω_i entries of the vector $\frac{C^{-1}\mu}{n}$

Covariance Matrix C for Linear Projections

- **Example 1** random variable x may have uniform P or a distribution Q close to P
- **assume m linear projections** $h_i(x)$
- rank (h_i) is r_i and rank (h_i, h_j) is r_{ij}

 \blacktriangleright then

$$
C=\left[(2^{r_i+r_j-r_{ij}}-1)\mu_i\mu_j\right]_{ij}
$$

KORK ERKER ADE YOUR

 \triangleright easy to compute and check singularity of C

Distribution of the Main Statistic S

- Assume P is close to Q
- \triangleright if x follows Q
- ighthen S has distribution $N(a, a)$
- \blacktriangleright if x follows P
- \triangleright then S has distribution close to $N(-a, a)$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

 \blacktriangleright a = μ C⁻¹ μ

Critical Region

- **Decide** $\overline{K} = k$ correct if $S(\nu, k) > z$ (threshold)
- \blacktriangleright Success probability

$$
\beta = \Pr(S(k,\nu) > z | \bar{K} = k \text{ correct})
$$

 \blacktriangleright The number of $\bar{\mathsf{K}}$ -candidates to brute force $\alpha 2^{|\bar{\mathsf{K}}|}$, where

$$
\alpha = \Pr(S(k,\nu) > z | \bar{K} = k \text{ incorrect})
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright We need an algorithm to construct \bar{K} -candidates

Constructing \bar{K} -candidates

 $\blacktriangleright \bar{K}_i$ has $2^{|\bar{K}_i|}$ values k_i , keep their weights $S_i(k_i,\nu_i)$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

 \triangleright combine k_i s.t.

\n- 1.
$$
\sum_{i} S_i(k_i, \nu_i) > z
$$
\n- 2. $\begin{cases} \bar{K}_i &= k_i \\ i &= 1, \ldots, m \end{cases}$ is consistent.
\n- 3. Solution is a \bar{K} -candidate
\n

 \blacktriangleright by walking over a search tree

Precomputation

 \blacktriangleright Space generated by linear functions \bar{K}_i

$$
\langle \bar{K} \rangle = \langle \bar{K}_1, \ldots, \bar{K}_m \rangle
$$

 \blacktriangleright Precompute sequence of subspaces

$$
0=\langle T_0\rangle\, \subset \langle T_1\rangle\, \subset \langle T_2\rangle\, \subset \ldots \subset \langle T_p\rangle = \langle \bar{K}\rangle.
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

- \blacktriangleright For each *i*, *i*
- \blacktriangleright precompute function $d_{ji}(B) = \max_{\{k_i|\mathcal{T}_j = B\}} \mathcal{S}_i(k_i)$
- ► d_{ji} has 2^{dim(< T_j>∩< \bar{K}_i >) values, may be kept}
- \blacktriangleright search tree algorithm below

Search Tree

- $\blacktriangleright \ \ 0=\langle\, T_0\rangle\, \subset \langle\, T_1\rangle\, \subset \langle\, T_2\rangle\, \subset \langle\, T_3\rangle = \langle\bar K_1,..,\bar K_m\rangle$
- **Continue a branch from level j, where** $T_i = B$ **, to level** $j + 1$ **if**

$$
\sum_{i=1}^m d_{ji}(B) > z
$$

 2990

- Otherwise cut and backtrack
- \blacktriangleright Tree complexity is the number of nodes

Formal Algorithm

- Start with $j = 1$, recursive step:
- ► value of $T_{i-1} \subset T_i$ determined, find a value for T_i
- ► Take any T_i -value B that extends the value of T_{i-1}
- For each *i* look up $d_{ii}(B)$
- \blacktriangleright Check $\sum_{i=1}^{m} d_{ji}(B) > z$, if yes
- \triangleright and $j < p$, then $j \leftarrow j + 1$ and repeat,
- If $j = p$, then as $\langle T_p \rangle = \langle \overline{K} \rangle$, a \overline{K} -candidate is found.

4 D > 4 P + 4 B + 4 B + B + 9 Q O

 \triangleright Otherwise, take another value for T_i or backtrack

Justification and Success Probability

- \triangleright Obviously,
- $\blacktriangleright \sum_{i=1}^{m} S_i(k_i,\nu_i) > z$, where $\bar{K}_i = k_i, i = 1,..,m$ are consistent,

KORKAR KERKER EL VOLO

- \blacktriangleright implies $\sum_{i=1}^m d_{ji}(B) > z$ for every j and $B(\text{value of } \mathcal{T}_j)$
- \triangleright We won't miss the correct key-value of \overline{K} ,
- ► Success probability is still β computed earlier

Complexity

- \blacktriangleright The number of $\bar{\mathsf{K}}$ -candidates is $\alpha 2^{|\bar{\mathsf{K}}|}$
- \blacktriangleright the number of cipher-keys to brute force

$$
(\alpha 2^{|{\bar K}|})\times 2^{{\mathsf{keysize}}-|{\bar K}|}=\alpha 2^{{\mathsf{keysize}}}
$$

KORK ERKER ADE YOUR

- \blacktriangleright The number of nodes in the search tree,
- \blacktriangleright experimentally for DES, is comparable with $\alpha 2^{\sf keysize}$
- \triangleright Constructing one node is easy:
- \triangleright few XORs and additions of low precision real numbers

Back to 16-round DES

 \triangleright By DES symmetry we can use two 14-bit vectors:

 X_2 [24, 18, 7, 29], X_{15} [16, 15, .., 11], X_{16} [24, 18, 7, 29] $X_1[24, 18, 7, 29], X_2[16, 15, \ldots, 11], X_{15}[24, 18, 7, 29]$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

- \triangleright considered independent as they incorporate different bits
- \triangleright 14 dependent 10-bit projections from each, 28 in all
- \triangleright two separable statistics independently distributed are used

How it Looks for One Projection

projection h_1 :

 X_2 [24, 18, 7, 29], X_{15} [16, 15], X_{16} [24, 18, 7, 29]

 \blacktriangleright \bar{K}_1 incorporates 20 unknowns

 x_{63} , x_{61} , x_{60} , x_{53} , x_{46} , x_{42} , x_{39} , x_{36} , x_{31} , $x_{30}, x_{27}, x_{26}, x_{25}, x_{22}, x_{21}, x_{12}, x_{10}, x_{7}, x_{5}$ $x_{57} + x_{51} + x_{50} + x_{19} + x_{18} + x_{15} + x_{14}$

KORK ERKER ADE YOUR

 x_i key-bits of 56-bit DES key

 \blacktriangleright For each value $\bar{K}_1 = k_1$ the value of $S_1(k_1)$ is kept

 \blacktriangleright 2²⁰ values

LLR₁-values for h_1

 \blacktriangleright $n=2^{41.8}$, expected LLR_1 for correct $\bar{K_1}=k_1$ is 4.6649, for incorrect -4.6638

 2990

- Experimental value for correct key 2.2668
- \geq 23370 values higher than that
- Similar picture for ot[h](#page-35-0)er 27 projections h_i

Constructing Search Tree

- \blacktriangleright \top_i -sequence:
- \blacktriangleright $T_1 = \langle x_2 \rangle, T_2 = \langle x_2, x_{19} \rangle, T_3 = \langle x_2, x_{19}, x_{60} \rangle, ...$
- \blacktriangleright x_2 appears in 14(maximal number) of \bar{K}_i , etc

 $x_2, x_{19}, x_{60}, x_{34}, x_{10}, x_{17}, x_{59}, x_{36}, x_{42}, x_{27}, x_{25},$ $x_{52}, x_{11}, x_{33}, x_{51}, x_9, x_{23}, x_{28}, x_5, x_{55}, x_{46}, x_{22},$ $x_{62}, x_{15}, x_{37}, x_{47}, x_7, x_{54}, x_{39}, x_{31}, x_{29}, x_{20}, x_{61},$ x_{63} , x_{30} , x_{38} , x_{26} , x_{50} , x_1 , x_{57} , x_{18} , x_{14} , x_{35} , x_{44} , $x_3, x_{21}, x_{41}, x_{13}, x_4, x_{45}, x_{53}, x_6, x_{12}, x_{43}$

KORK ERKER ADE YOUR

Search Tree Complexity

plain-texts $n = 2^{41.8}$, success rate 0.85

- in fig. examined values of T_i (tree nodes), $j = 38, ...54$, log₂ scale
- $\blacktriangleright\;\#\;\bar K\text{-}$ candidates is $2^{39.8},\;\#\;$ key to brute force $n=2^{41.8}$
- \blacktriangleright overall number of nodes is $2^{45.5} << 2^{54}$. Constructing the nodes is faster(at least in bit operations) than brute force
- improvement over Matsui's result on DES($n = 2^{43}$, 0.85)

 \Rightarrow

Possible Improvements

- ► Use another statistics for projections h_i . Let $\bar{K}_{0i} \subset \bar{K}_i$
- \blacktriangleright e.g., key-bits \bar{K}_{0i} affect the distribution, then

$$
LLR_i^*(\bar{K}_i \setminus \bar{K_0}_i) = \max_{K_{0i}} LLR_i(\bar{K}_i)
$$

- \blacktriangleright In practice better, in line with Matsui's analysis
- \blacktriangleright However the distribution of

$$
(\mathit{LLR}_1^*,\ldots,\mathit{LLR}_m^*)
$$

is not well understood. Success probability is difficult to predict

 \blacktriangleright Experimentally for a truncated cipher and extrapolate?

Conclusions

- \triangleright A method of computing joint distribution of encryption internal bites X, Y is presented
- \triangleright We have realised that Multivariate Linear Analysis and its variations are inefficient for large X, Y . A solution to this problem is suggested
- \triangleright based on a new statistic which reflects round function structure and a new search algorithm to find key-candidates which fall into critical region
- \triangleright The method was applied to DES, gave an improvement over Matsui's results
- \triangleright We were able to predict correctly success probability (8-round DES) and the number of final key-candidates(16-round DES)
- \blacktriangleright Complexity of the search algorithm is 10^3 times faster than brute force over all sub-keys which affect the statistic