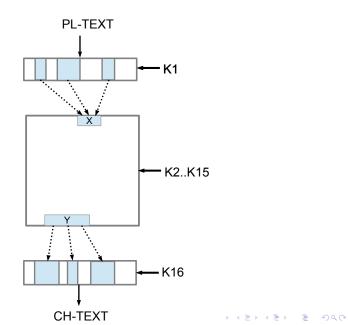
Separable Statistics in Linear Cryptanalysis

Igor Semaev, Univ. of Bergen, Norway

joint work with Stian Fauskanger

5 September 2017, MMC workshop

Round Block Cipher Cryptanalysis



Logarithmic Likelihood Ratio(LLR) Statistic

- To distinguish two distributions with densities P(x), Q(x)
- by independent observations $\nu_1, ..., \nu_n$
- Most powerful criteria(Neyman-Pearson lemma):
- ► accept P(x) if

$$\sum_{i=1}^n \ln rac{P(
u_i)}{Q(
u_i)} > threshold$$

Ieft hand side function is called LLR statistic

LLR Statistic for large (X, Y)?

- Approximate distribution of (X, Y) depends on some bits of K2,..,K15
- Observation on (X, Y) depends on some bits of K1, K16
- \bar{K} key-bits which affect distribution and observation
- For large (X, Y) LLR statistic depends on many key-bits \overline{K}
- Conventional Multivariate Linear Cryptanalysis not efficient:
- $2^{|\bar{K}|}$ computations of the statistic to range the values of \bar{K}
- Our work: $<< 2^{|\vec{K}|} (\approx 10^3 \text{ times faster in DES})$
- by using a new statistic
- which reflects the structure of the round function
- that has a price to pay, but trade-off is positive

LLRs for Projections

- $(h_1, .., h_m)$ some linear projections of (X, Y) such that
- distr/observ of h_i depends on a lower number of key-bits \bar{K}_i
- happens for modern ciphers with small S-boxes
- ▶ Vector (*LLR*₁, .., *LLR*_m) asymptotically distributed
- $N(n\mu, nC)$ if the value of \overline{K} is correct
- ▶ and close to $N(-n\mu, nC)$ if the value of \overline{K} is incorrect
- mean vector μ , covariance matrix C, number of plain-texts n

Separable Statistics

- LLR statistic S to distinguish two normal distributions
- quadratic, but in our case degenerates to linear
- $S(\bar{K},\nu) = \sum_{i=1}^{m} S_i(\bar{K}_i,\nu_i)$, where $S_i = \omega_i LLR_i$
- ω_i weights, ν observation on (X, Y), and ν_i observation on h_i
- S distributed N(a, a) if $\overline{K} = k$ correct
- close to N(-a, a) if $\overline{K} = k$ incorrect, for an explicit a
- For polynomial schemes the theory of separable statistics was developed by lvchenko, Medvedev,.. in 1970-s
- ▶ Problem: find K
 = k such that S(k, ν) > threshold without brute force

Reconstruct a set of \overline{K} -candidates k

• find solutions $\bar{K} = k$ to (linear for DES) equations

$$\begin{cases} \bar{K}_i &= k_i \quad \text{with weight } S_i(k_i, \nu_i) \\ i &= 1, .., m \end{cases}$$

- such that $S(k,\nu) = \sum_{i=1}^{m} S_i(k_i,\nu_i) > threshold$
- the system is sparse: $|\bar{K}|$ is large, but $|\bar{K}_i| << |\bar{K}|$
- Walking over a search tree
- Algorithm first appears in I. Semaev, New Results in the Linear Cryptanalysis of DES, Crypt. ePrint Arch., 361, May 2014
- We compute success rate and the number of wrong solutions
- that is \bar{K} -candidates to brute force

Reconstruction Toy Example

S_1	<i>S</i> ₁		0.2	0.3	0.1
$x_1 + x_2$		0	0	1	1
x3	;	0	1	0	1
	$\frac{S_2}{x_1 + x_3}$		0.5	0.1	
			0	1	
S	3	0.4	0.5	0.7	0.1
x ₁		0	0	1	1
$x_2 + x_3$		0	1	0	1

find x_1, x_2, x_3 s.t.

 $S(x_1, x_2, x_3) = S_1(x_1 + x_2, x_3) + S_2(x_1 + x_3) + S_3(x_1, x_2 + x_3) > 1$

Solutions 010, 111

Implementation for 16-Round DES

- 2 strings of 14 internal bits each(or a 28-bit string)
- 54 key-bits involved
- we use 28 of 10-bit projections, each involves \approx 20 key-bits

- two separable statistics, one for each 14-bit string
- success probability 0.85(theoretically)
- number of (56-bit key)-candidates is $2^{41.8}$ (theoretically&empirically) for $n = 2^{41.8}$
- search tree complexity is about the same

Further Talk Outline

Formulae for internal bits probability distribution

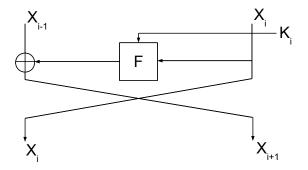
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Construction of the statistic S
- Search tree algorithm
- Implementation details for 16-round DES

Probability of events in encryption(a priori distribution)

- Z vector of some internal bits in the encryption algorithm
- we want to compute Pr(Z = A) over all possible A
- that makes a distribution of Z
- More generally, $Pr(\mathcal{E})$ for some event \mathcal{E} in the encryption

Notation: one Feistel round



- ► in DES
- ▶ X_{i-1}, X_i are 32-bit blocks
- ► *K_i* is 48-bit round key
- sub-key of the main 56-bit key

Prob. Description of *r*-round Feistel (for SPN similar)

- ► X₀, X₁,..., X_{r+1} random independently uniformly generated *m*-bit blocks
- ► Main event C defines DES:

$$X_{i-1} \oplus X_{i+1} = F_i(X_i, K_i), \quad i = 1, \ldots, r$$

 K_1, \ldots, K_r fixed round keys

Then

$$\mathsf{Pr}(\mathcal{E}|\mathcal{C}) = \frac{\mathsf{Pr}(\mathcal{E}\mathcal{C})}{\mathsf{Pr}(\mathcal{C})} = 2^{mr}\mathsf{Pr}(\mathcal{E}\mathcal{C}).$$

likely depends on all key-bits.

Approximatie Probabilistic Description

- We want **approximate** probability of \mathcal{E} in the encryption
- Choose a larger event $\mathcal{C}_{\alpha} \supseteq \mathcal{C}$:

 $\mathsf{Pr}(\mathcal{E}|\mathcal{C}) pprox \mathsf{Pr}(\mathcal{E}|\mathcal{C}_{lpha}) = rac{\mathsf{Pr}(\mathcal{E}\mathcal{C}_{lpha})}{\mathsf{Pr}(\mathcal{C}_{lpha})}$

- $\mathbf{Pr}(\mathcal{E}|\mathcal{C}_{\alpha})$ may depend on a lower number of key-bits
- Easier to compute and use

How to Choose \mathcal{C}_{lpha}

To compute the distribution of the random variable

$$Z = X_0[\alpha_1], X_1[\alpha_2 \cup \beta_1], X_r[\alpha_{r-1} \cup \beta_r], X_{r+1}[\alpha_r]$$

• ($X[\alpha]$ sub-vector of X defined by α), we choose trail

$$X_i[\beta_i], F_i[\alpha_i], \quad i=1,\ldots,r$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• and event C_{α} :

$$X_{i-1}[\alpha_i] \oplus X_{i+1}[\alpha_i] = F_i(X_i, K_i)[\alpha_i], \quad i = 1, \dots, r.$$

> $\mathbf{Pr}(\mathcal{C}_{\alpha}) = 2^{-\sum_{i=1}^r |\alpha_i|}$

Regular trails

trail

$$X_i[\beta_i], F_i[\alpha_i], \quad i=1,\ldots,n$$

is called regular if

$$\gamma_i \cap (\alpha_{i-1} \cup \alpha_{i+1}) \subseteq \beta_i \subseteq \gamma_i, \quad i = 1, \dots, n.$$

- $X_i[\gamma_i]$ input bits relevant to $F_i[\alpha_i]$
- For regular trails Pr(Z = A|C_α) is computed with a convolution-type formula, only depends on α_i

Convolution Formula

$$Z = X_0[\alpha_1], X_1[\alpha_2 \cup \beta_1], X_r[\alpha_{r-1} \cup \beta_r], X_{r+1}[\alpha_r]$$

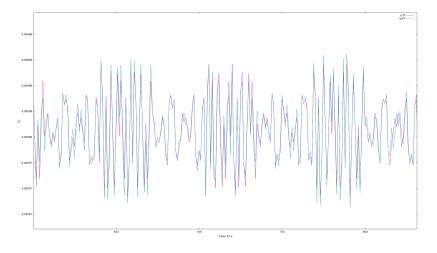
$$\mathsf{Pr}(Z = A_0, A_1, A_r, A_{r+1} | \mathcal{C}_{\alpha}) = \frac{2\sum_{i=2}^{r-1} |\alpha_i|}{2\sum_{i=1}^{r} |(\alpha_{i-1} \cup \alpha_{i+1}) \setminus \beta_i|} \sum_{A_2, \dots, A_{r-1}} \prod_{i=1}^{r} \mathsf{q}_i (A_i[\beta_i], (A_{i-1} \oplus A_{i+1})[\alpha_i], k_i),$$

probability distribution of round sub-vectors

$$\mathbf{q}_i(b, a, k) = \mathbf{Pr}(X_i[\beta_i] = b, F_i[\alpha_i] = a \mid K_i[\delta_i] = k_i)$$

- K_i[δ_i] key-bits relevant to F_i[α_i]
- Corollary: compute iteratively by splitting encryption into two parts. Few seconds for 14-round DES

Theoretical(red) vs Empirical(green) Distributions



- \blacktriangleright X₂[24, 18, 7, 29], X₇[16, 14], X₈[24, 18, 7, 29]
- ▶ Emp. with 2³⁹ random pl-texts for one randomly chosen key

Approximate Distribution of a Vector from 14-round DES

- $\blacktriangleright X_2[24, 18, 7, 29], X_{15}[16, 15, .., 11], X_{16}[24, 18, 7, 29]$
- computed with the trail

round <i>i</i>	β_i, α_i
2, 6, 10, 14	\emptyset, \emptyset
3, 5, 7, 9, 11, 13	$\{15\}, \{24, 18, 7, 29\}$
4, 8, 12	$\{29\}, \{15\}$
15	$\{16,\ldots,11\},\{24,18,7,29\}$

depends on 7 key-bits:

 $K_{\{3,5,7,9,11,13\}}[22] \oplus K_{\{4,8,12\}}[44], K_{15}[23,22,21,20,19,18].$

• notation $K_{\{4,8,12\}}[44] = K_4[44] \oplus K_8[44] \oplus K_{12}[44]$

Another Approximation to the Same Distribution

- ▶ same $X_2[24, 18, 7, 29], X_{15}[16, 15, ..., 11], X_{16}[24, 18, 7, 29]$
- with another trail

round i	β_i, α_i
2	\emptyset, \emptyset
3, 5, 7, 9, 11, 13	$\{16,15,14\},\{24,18,7,29\}$
4, 6, 8, 10, 12, 14	$\{29,24\},\{16,15,14\}$
15	$\{16,\ldots,11\},\{24,18,7,29\}$

- different distribution
- quadratic imbalance is negligibly larger
- but depends on a much larger number of the key-bits

Conventional LLR statistic

• We use 28 internal bits in the analysis of DES:

 $X_2[24, 18, 7, 29], X_{15}[16, 15, ..., 11], X_{16}[24, 18, 7, 29]$ $X_1[24, 18, 7, 29], X_2[16, 15, ..., 11], X_{15}[24, 18, 7, 29]$

- distribution and observation depend on available plain-text/cipher-text and 54 key-bits
- conventional LLR statistic takes 2⁵⁴ computations
- no advantage over Matsui's 2⁴³ complexity for breaking DES

Attack

• We used 28 projections($i, j \in \{16, ..., 11\}$):

 $X_2[24, 18, 7, 29], X_{15}[i, j], X_{16}[24, 18, 7, 29]$ $X_1[24, 18, 7, 29], X_2[i, j], X_{15}[24, 18, 7, 29]$

- except i = 16, j = 11, where the distributions are uniform
- ▶ For each projection LLR statistic depends on (≤21) key-bits

- We constructed two new separable statistics for two independent bunches of the projections
- ► and combined (≤ 21)-bit values to find a number of candidates for 54-bit sub-key
- brute force those candidates

Separable Statistics in Details

- observation $\nu = (\nu_1, \dots, \nu_m)$ on *m* projections $(h_1, ..., h_m)$
- ν_i depends on plain/cipher-texts and \bar{K}_i
- best statistic is approx. separable: $S(\bar{K}, \nu) = \sum_{i=1}^{m} S_i(\bar{K}_i, \nu_i)$
- $S_i(\bar{K}_i, \nu_i)$ weighted LLR statistics for $h_i(\mathbf{x})$
- Construct \bar{K} -values (s.t. $\sum_{i=1}^{m} S_i(\bar{K}_i, \nu_i) > \text{threshold}$) from \bar{K}_i -values

One computes error probabilities etc., details are below

Separable Statistic Construction

- x may have distribution Q or P. Projection h_i(x) may have Q_i or P_i i = 1,..., m
- n plain/cipher-texts
- LLR statistic for h_i : $LLR_i = \sum_b \nu_{ib} \ln \left(\frac{q_{ib}}{\rho_{ib}} \right)$
- ► (LLR₁,...,LLR_m) normally distributed
- $\mathbf{N}(n\mu_Q, nC_Q)$ or $\mathbf{N}(n\mu_P, nC_P)$
- If Q is close to P, then µ_Q ≈ −µ_P(follows from Baigneres et al. 2004) and C_Q ≈ C_P(this work)

• We get $N(n\mu, nC)$ or $N(-n\mu, nC)$

Construct Separable Statistics 1

- assume non-singular C, always the case in our analysis of DES
- ▶ To distinguish $N(-n\mu, nC)$, $N(n\mu, nC)$ we use LLR statistic S
- which degenerates to linear

$$S = \left(\frac{C^{-1}\mu}{n}\right) \left(LLR_1, \dots, LLR_m\right)^T$$

• So that $S(\bar{K},\nu) = \sum_{i=1}^{m} S_i(\bar{K}_i,\nu_i)$, where $S_i = \omega_i LLR_i$

• weights ω_i entries of the vector $\frac{C^{-1}\mu}{n}$

Covariance Matrix C for Linear Projections

- random variable x may have uniform P or a distribution Q close to P
- assume *m* linear projections $h_i(\mathbf{x})$
- rank (h_i) is r_i and rank (h_i, h_j) is r_{ij}

then

$$C = \left[(2^{r_i + r_j - r_{ij}} - 1) \mu_i \mu_j \right]_{ij}$$

easy to compute and check singularity of C

Distribution of the Main Statistic S

- Assume P is close to Q
- ▶ if x follows Q
- ▶ then S has distribution **N**(a, a)
- if x follows P
- then S has distribution close to N(-a, a)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► $a = \mu C^{-1} \mu$

Critical Region

- Decide $\bar{K} = k$ correct if $S(\nu, k) > z$ (threshold)
- Success probability

$$\beta = \Pr(S(k, \nu) > z | \overline{K} = k \text{ correct})$$

• The number of \overline{K} -candidates to brute force $\alpha 2^{|\overline{K}|}$, where

$$\alpha = \Pr(S(k, \nu) > z | \overline{K} = k \text{ incorrect})$$

• We need an algorithm to construct \bar{K} -candidates

Constructing \bar{K} -candidates

• \bar{K}_i has $2^{|\bar{K}_i|}$ values k_i , keep their weights $S_i(k_i, \nu_i)$

▶ combine k_i s.t.

1.
$$\sum_{i} S_{i}(k_{i}, \nu_{i}) > z$$

2.
$$\begin{cases} \bar{K}_{i} = k_{i} \\ i = 1, ..., m \end{cases}$$
 is consistent.
3. Solution is a \bar{K} -candidate

by walking over a search tree

Precomputation

• Space generated by linear functions \bar{K}_i

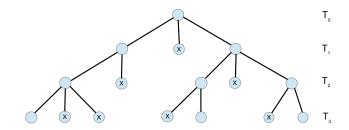
$$\langle \bar{K} \rangle = \langle \bar{K}_1, \dots, \bar{K}_m \rangle$$

Precompute sequence of subspaces

$$0 = \langle T_0 \rangle \subset \langle T_1 \rangle \subset \langle T_2 \rangle \subset \ldots \subset \langle T_p \rangle = \langle \overline{K} \rangle.$$

- For each i, j
- precompute function $d_{ji}(B) = \max_{\{k_i | T_j = B\}} S_i(k_i)$
- d_{ji} has $2^{\dim(\langle T_j \rangle \cap \langle \overline{K}_i \rangle)}$ values, may be kept
- search tree algorithm below

Search Tree



- ► 0 = $\langle T_0 \rangle \subset \langle T_1 \rangle \subset \langle T_2 \rangle \subset \langle T_3 \rangle = \langle \overline{K}_1, ..., \overline{K}_m \rangle$
- Continue a branch from level j, where $T_j = B$, to level j + 1 if

$$\sum_{i=1}^m d_{ji}(B) > z$$

・ロト ・個ト ・ヨト ・ヨト 三日

- Otherwise cut and backtrack
- Tree complexity is the number of nodes

Formal Algorithm

- ▶ Start with *j* = 1, recursive step:
- ▶ value of $T_{j-1} \subset T_j$ determined, find a value for T_j
- Take any T_j -value B that extends the value of T_{j-1}
- ► For each i look up d_{ji}(B)
- Check $\sum_{i=1}^{m} d_{ji}(B) > z$, if yes
- ▶ and j < p, then $j \leftarrow j + 1$ and repeat,
- If j = p, then as $\langle T_p \rangle = \langle \bar{K} \rangle$, a \bar{K} -candidate is found.

Otherwise, take another value for T_i or backtrack

Justification and Success Probability

- Obviously,
- $\sum_{i=1}^{m} S_i(k_i, \nu_i) > z$, where $\bar{K}_i = k_i, i = 1, ..., m$ are consistent,

- implies $\sum_{i=1}^{m} d_{ji}(B) > z$ for every j and B(value of T_j)
- We won't miss the correct key-value of \bar{K} ,
- Success probability is still β computed earlier

Complexity

- The number of \bar{K} -candidates is $\alpha 2^{|\bar{K}|}$
- the number of cipher-keys to brute force

$$(\alpha 2^{|\bar{K}|}) \times 2^{\mathsf{keysize} - |\bar{K}|} = \alpha 2^{\mathsf{keysize}}$$

- The number of nodes in the search tree,
- experimentally for DES, is comparable with $\alpha 2^{\text{keysize}}$
- Constructing one node is easy:
- few XORs and additions of low precision real numbers

Back to 16-round DES

By DES symmetry we can use two 14-bit vectors:

 $X_2[24, 18, 7, 29], X_{15}[16, 15, .., 11], X_{16}[24, 18, 7, 29]$ $X_1[24, 18, 7, 29], X_2[16, 15, .., 11], X_{15}[24, 18, 7, 29]$

- considered independent as they incorporate different bits
- 14 dependent 10-bit projections from each, 28 in all
- two separable statistics independently distributed are used

How it Looks for One Projection

• projection h_1 :

 $X_2[24, 18, 7, 29], X_{15}[16, 15], X_{16}[24, 18, 7, 29]$

• \bar{K}_1 incorporates 20 unknowns

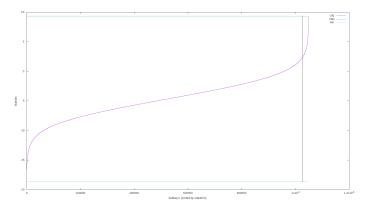
 $\begin{aligned} & x_{63}, x_{61}, x_{60}, x_{53}, x_{46}, x_{42}, x_{39}, x_{36}, x_{31}, \\ & x_{30}, x_{27}, x_{26}, x_{25}, x_{22}, x_{21}, x_{12}, x_{10}, x_{7}, x_{5}, \\ & x_{57} + x_{51} + x_{50} + x_{19} + x_{18} + x_{15} + x_{14} \end{aligned}$

 x_i key-bits of 56-bit DES key

For each value $\bar{K}_1 = k_1$ the value of $S_1(k_1)$ is kept

2²⁰ values

 LLR_1 -values for h_1



▶ $n = 2^{41.8}$, expected LLR_1 for correct $\overline{K}_1 = k_1$ is 4.6649, for incorrect -4.6638

- Experimental value for correct key 2.2668
- 23370 values higher than that
- Similar picture for other 27 projections h_i

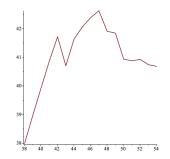
Constructing Search Tree

- ► T_j-sequence:
- ► $T_1 = \langle x_2 \rangle, T_2 = \langle x_2, x_{19} \rangle, T_3 = \langle x_2, x_{19}, x_{60} \rangle, ...$
- x_2 appears in 14(maximal number) of \overline{K}_i , etc

X2, X19, X60, X34, X10, X17, X59, X36, X42, X27, X25, X52, X11, X33, X51, X9, X23, X28, X5, X55, X46, X22, X62, X15, X37, X47, X7, X54, X39, X31, X29, X20, X61, X63, X30, X38, X26, X50, X1, X57, X18, X14, X35, X44, X3, X21, X41, X13, X4, X45, X53, X6, X12, X43

Search Tree Complexity

▶ plain-texts $n = 2^{41.8}$, success rate 0.85



- ▶ in fig. examined values of T_j(tree nodes), j = 38,..54, log₂ scale
- $\# \bar{K}$ -candidates is 2^{39.8}, # key to brute force $n = 2^{41.8}$
- overall number of nodes is 2^{45.5} << 2⁵⁴. Constructing the nodes is faster(at least in bit operations) than brute force
- improvement over Matsui's result on $DES(n = 2^{43}, 0.85)$

Possible Improvements

- Use another statistics for projections h_i . Let $\bar{K}_{0i} \subset \bar{K}_i$
- e.g., key-bits \bar{K}_{0i} affect the distribution, then

$$LLR_i^*(\bar{K_i}\setminus \bar{K_{0i}}) = \max_{K_{0i}} LLR_i(\bar{K_i})$$

- In practice better, in line with Matsui's analysis
- However the distribution of

$$(LLR_1^*,\ldots,LLR_m^*)$$

is not well understood. Success probability is difficult to predict

Experimentally for a truncated cipher and extrapolate?

Conclusions

- ► A method of computing joint distribution of encryption internal bites *X*, *Y* is presented
- We have realised that Multivariate Linear Analysis and its variations are inefficient for large X, Y. A solution to this problem is suggested
- based on a new statistic which reflects round function structure and a new search algorithm to find key-candidates which fall into critical region
- The method was applied to DES, gave an improvement over Matsui's results
- We were able to predict correctly success probability(8-round DES) and the number of final key-candidates(16-round DES)
- Complexity of the search algorithm is 10³ times faster than brute force over all sub-keys which affect the statistic