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Logarithmic Likelihood Ratio(LLR) Statistic

I To distinguish two distributions with densities P(x),Q(x)

I by independent observations ν1, .., νn

I Most powerful criteria(Neyman-Pearson lemma):

I accept P(x) if

n∑
i=1

ln
P(νi )

Q(νi )
> threshold

I left hand side function is called LLR statistic



LLR Statistic for large (X ,Y )?

I Approximate distribution of (X ,Y ) depends on some bits of
K2, ..,K15

I Observation on (X ,Y ) depends on some bits of K1,K16

I K̄ key-bits which affect distribution and observation

I For large (X ,Y ) LLR statistic depends on many key-bits K̄

I Conventional Multivariate Linear Cryptanalysis not efficient:

I 2|K̄ | computations of the statistic to range the values of K̄

I Our work: << 2|K̄ |(≈ 103 times faster in DES)

I by using a new statistic

I which reflects the structure of the round function

I that has a price to pay, but trade-off is positive



LLRs for Projections

I (h1, .., hm) some linear projections of (X ,Y ) such that

I distr/observ of hi depends on a lower number of key-bits K̄i

I happens for modern ciphers with small S-boxes

I Vector (LLR1, .., LLRm) asymptotically distributed

I N(nµ, nC ) if the value of K̄ is correct

I and close to N(−nµ, nC ) if the value of K̄ is incorrect

I mean vector µ, covariance matrix C , number of plain-texts n



Separable Statistics

I LLR statistic S to distinguish two normal distributions

I quadratic, but in our case degenerates to linear

I S(K̄ , ν) =
∑m

i=1 Si (K̄i , νi ), where Si = ωi LLRi

I ωi weights, ν observation on (X ,Y ), and νi observation on hi
I S distributed N(a, a) if K̄ = k correct

I close to N(−a, a) if K̄ = k incorrect, for an explicit a

I For polynomial schemes the theory of separable statistics was
developed by Ivchenko, Medvedev,.. in 1970-s

I Problem: find K̄ = k such that S(k , ν) > threshold without
brute force



Reconstruct a set of K̄ -candidates k

I find solutions K̄ = k to (linear for DES) equations{
K̄i = ki with weightSi (ki , νi )

i = 1, ..,m

I such that S(k , ν) =
∑m

i=1 Si (ki , νi ) > threshold

I the system is sparse: |K̄ | is large, but |K̄i | << |K̄ |
I Walking over a search tree

I Algorithm first appears in I. Semaev, New Results in the Linear
Cryptanalysis of DES, Crypt. ePrint Arch., 361, May 2014

I We compute success rate and the number of wrong solutions

I that is K̄ -candidates to brute force



Reconstruction Toy Example

S1 0.1 0.2 0.3 0.1

x1 + x2 0 0 1 1

x3 0 1 0 1

S2 0.5 0.1

x1 + x3 0 1

S3 0.4 0.5 0.7 0.1

x1 0 0 1 1

x2 + x3 0 1 0 1

find x1, x2, x3 s.t.

S(x1, x2, x3) = S1(x1 + x2, x3) + S2(x1 + x3) + S3(x1, x2 + x3) > 1

Solutions 010, 111



Implementation for 16-Round DES

I 2 strings of 14 internal bits each(or a 28-bit string)

I 54 key-bits involved

I we use 28 of 10-bit projections, each involves ≈ 20 key-bits

I two separable statistics, one for each 14-bit string

I success probability 0.85(theoretically)

I number of (56-bit key)-candidates is
241.8(theoretically&empirically) for n = 241.8

I search tree complexity is about the same



Further Talk Outline

I Formulae for internal bits probability distribution

I Construction of the statistic S

I Search tree algorithm

I Implementation details for 16-round DES



Probability of events in encryption(a priori distribution)

I Z vector of some internal bits in the encryption algorithm

I we want to compute Pr(Z = A) over all possible A

I that makes a distribution of Z

I More generally, Pr(E) for some event E in the encryption



Notation: one Feistel round

FF

X
i-1

X
i
K
i

X
i

X
i+1

I in DES

I Xi−1,Xi are 32-bit blocks

I Ki is 48-bit round key

I sub-key of the main 56-bit key



Prob. Description of r -round Feistel ( for SPN similar)

I X0,X1, . . . ,Xr+1 random independently uniformly generated
m-bit blocks

I Main event C defines DES:

Xi−1 ⊕ Xi+1 = Fi (Xi ,Ki ), i = 1, . . . , r

K1, . . . ,Kr fixed round keys

I Then

Pr(E|C) =
Pr(EC)

Pr(C)
= 2mrPr(EC).

I likely depends on all key-bits.



Approximatie Probabilistic Description

I We want approximate probability of E in the encryption

I Choose a larger event Cα ⊇ C :

I

Pr(E|C) ≈ Pr(E|Cα) =
Pr(ECα)

Pr(Cα)

I Pr(E|Cα) may depend on a lower number of key-bits

I Easier to compute and use



How to Choose Cα

I To compute the distribution of the random variable

Z = X0[α1],X1[α2 ∪ β1],Xr [αr−1 ∪ βr ],Xr+1[αr ]

I ( X [α] sub-vector of X defined by α), we choose trail

Xi [βi ],Fi [αi ], i = 1, . . . , r

I and event Cα :

Xi−1[αi ]⊕ Xi+1[αi ] = Fi (Xi ,Ki )[αi ], i = 1, . . . , r .

I Pr(Cα) = 2−
∑r

i=1 |αi |



Regular trails

I trail
Xi [βi ],Fi [αi ], i = 1, . . . , n

I is called regular if

γi ∩ (αi−1 ∪ αi+1) ⊆ βi ⊆ γi , i = 1, . . . , n.

I Xi [γi ] input bits relevant to Fi [αi ]

I For regular trails Pr(Z = A|Cα) is computed with a
convolution-type formula, only depends on αi



Convolution Formula

I Z = X0[α1],X1[α2 ∪ β1],Xr [αr−1 ∪ βr ],Xr+1[αr ]

I Pr(Z = A0,A1,Ar ,Ar+1|Cα) =

2
∑r−1

i=2 |αi |

2
∑r

i=1 |(αi−1∪αi+1)\βi |

∑
A2,...,Ar−1

r∏
i=1

qi (Ai [βi ], (Ai−1⊕Ai+1)[αi ], ki ),

I probability distribution of round sub-vectors

qi (b, a, k) = Pr(Xi [βi ] = b,Fi [αi ] = a |Ki [δi ] = ki )

I Ki [δi ] key-bits relevant to Fi [αi ]

I Corollary: compute iteratively by splitting encryption into two
parts. Few seconds for 14-round DES



Theoretical(red) vs Empirical(green) Distributions

I X2[24, 18, 7, 29],X7[16, 14],X8[24, 18, 7, 29]

I Emp. with 239 random pl-texts for one randomly chosen key



Approximate Distribution of a Vector from 14-round DES

I X2[24, 18, 7, 29],X15[16, 15, .., 11],X16[24, 18, 7, 29]

I computed with the trail

round i βi , αi

2, 6, 10, 14 ∅, ∅
3, 5, 7, 9, 11, 13 {15}, {24, 18, 7, 29}

4, 8, 12 {29}, {15}
15 {16, . . . , 11}, {24, 18, 7, 29}

I depends on 7 key-bits:

K{3,5,7,9,11,13}[22]⊕ K{4,8,12}[44],K15[23, 22, 21, 20, 19, 18].

I notation K{4,8,12}[44] = K4[44]⊕ K8[44]⊕ K12[44]



Another Approximation to the Same Distribution

I same X2[24, 18, 7, 29],X15[16, 15, .., 11],X16[24, 18, 7, 29]

I with another trail

round i βi , αi

2 ∅, ∅
3, 5, 7, 9, 11, 13 {16, 15, 14}, {24, 18, 7, 29}

4, 6, 8, 10, 12, 14 {29, 24}, {16, 15, 14}
15 {16, . . . , 11}, {24, 18, 7, 29}

I different distribution

I quadratic imbalance is negligibly larger

I but depends on a much larger number of the key-bits



Conventional LLR statistic

I We use 28 internal bits in the analysis of DES:

X2[24, 18, 7, 29],X15[16, 15, .., 11],X16[24, 18, 7, 29]

X1[24, 18, 7, 29],X2[16, 15, .., 11],X15[24, 18, 7, 29]

I distribution and observation depend on available
plain-text/cipher-text and 54 key-bits

I conventional LLR statistic takes 254 computations

I no advantage over Matsui’s 243 complexity for breaking DES



Attack

I We used 28 projections(i , j ∈ {16, .., 11}):

X2[24, 18, 7, 29],X15[i , j ],X16[24, 18, 7, 29]

X1[24, 18, 7, 29],X2[i , j ],X15[24, 18, 7, 29]

I except i = 16, j = 11, where the distributions are uniform

I For each projection LLR statistic depends on (≤21) key-bits

I We constructed two new separable statistics for two
independent bunches of the projections

I and combined (≤ 21)-bit values to find a number of
candidates for 54-bit sub-key

I brute force those candidates



Separable Statistics in Details

I observation ν = (ν1, . . . , νm) on m projections (h1, .., hm)

I νi depends on plain/cipher-texts and K̄i

I best statistic is approx. separable: S(K̄ , ν) =
∑m

i=1 Si (K̄i , νi )

I Si (K̄i , νi ) weighted LLR statistics for hi (x)

I Construct K̄ -values (s.t.
∑m

i=1 Si (K̄i , νi ) > threshold) from
K̄i -values

I One computes error probabilities etc., details are below



Separable Statistic Construction

I x may have distribution Q or P. Projection hi (x) may have
Qi or Pi i = 1, ..,m

I n plain/cipher-texts

I LLR statistic for hi : LLRi =
∑

b νib ln
(
qib
pib

)
I (LLR1, . . . , LLRm) normally distributed

I N(nµQ , nCQ) or N(nµP , nCP)

I If Q is close to P, then µQ ≈ −µP(follows from Baigneres et
al. 2004) and CQ ≈ CP(this work)

I We get N(nµ, nC ) or N(−nµ, nC )



Construct Separable Statistics 1

I assume non-singular C , always the case in our analysis of DES

I To distinguish N(−nµ, nC ),N(nµ, nC ) we use LLR statistic S

I which degenerates to linear

S = (
C−1µ

n
) (LLR1, . . . , LLRm)T

I So that S(K̄ , ν) =
∑m

i=1 Si (K̄i , νi ), where Si = ωiLLRi

I weights ωi entries of the vector C−1µ
n



Covariance Matrix C for Linear Projections

I random variable x may have uniform P or a distribution Q
close to P

I assume m linear projections hi (x)

I rank(hi ) is ri and rank(hi , hj) is rij
I then

C =
[
(2ri+rj−rij − 1)µiµj

]
ij

I easy to compute and check singularity of C



Distribution of the Main Statistic S

I Assume P is close to Q

I if x follows Q

I then S has distribution N(a, a)

I if x follows P

I then S has distribution close to N(−a, a)

I a = µC−1µ



Critical Region

I Decide K̄ = k correct if S(ν, k) > z(threshold)

I Success probability

β = Pr(S(k , ν) > z |K̄ = k correct)

I The number of K̄ -candidates to brute force α2|K̄ |, where

α = Pr(S(k , ν) > z |K̄ = k incorrect)

I We need an algorithm to construct K̄ -candidates



Constructing K̄ -candidates

I K̄i has 2|K̄i | values ki , keep their weights Si (ki , νi )
I combine ki s.t.

1.
∑

i Si (ki , νi ) > z

2.

{
K̄i = ki

i = 1, ..,m
is consistent.

3. Solution is a K̄ -candidate

I by walking over a search tree



Precomputation

I Space generated by linear functions K̄i

〈K̄ 〉 = 〈K̄1, . . . , K̄m〉

I Precompute sequence of subspaces

0 = 〈T0〉 ⊂ 〈T1〉 ⊂ 〈T2〉 ⊂ . . . ⊂ 〈Tp〉 = 〈K̄ 〉.

I For each i , j

I precompute function dji (B) = max{ki |Tj=B} Si (ki )

I dji has 2dim(<Tj>∩<K̄i>) values, may be kept

I search tree algorithm below



Search Tree
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I 0 = 〈T0〉 ⊂ 〈T1〉 ⊂ 〈T2〉 ⊂ 〈T3〉 = 〈K̄1, .., K̄m〉
I Continue a branch from level j , where Tj = B, to level j + 1 if

m∑
i=1

dji (B) > z

I Otherwise cut and backtrack
I Tree complexity is the number of nodes



Formal Algorithm

I Start with j = 1, recursive step:

I value of Tj−1 ⊂ Tj determined, find a value for Tj

I Take any Tj -value B that extends the value of Tj−1

I For each i look up dji (B)

I Check
∑m

i=1 dji (B) > z , if yes

I and j < p, then j ← j + 1 and repeat,

I If j = p, then as 〈Tp〉 = 〈K̄ 〉, a K̄ -candidate is found.

I Otherwise, take another value for Tj or backtrack



Justification and Success Probability

I Obviously,

I
∑m

i=1 Si (ki , νi ) > z , where K̄i = ki , i = 1, ..,m are consistent,

I implies
∑m

i=1 dji (B) > z for every j and B(value of Tj)

I We won’t miss the correct key-value of K̄ ,

I Success probability is still β computed earlier



Complexity

I The number of K̄ -candidates is α2|K̄ |

I the number of cipher-keys to brute force

(α2|K̄ |)× 2keysize−|K̄ | = α2keysize

I The number of nodes in the search tree,

I experimentally for DES, is comparable with α2keysize

I Constructing one node is easy:

I few XORs and additions of low precision real numbers



Back to 16-round DES

I By DES symmetry we can use two 14-bit vectors:

X2[24, 18, 7, 29],X15[16, 15, .., 11],X16[24, 18, 7, 29]

X1[24, 18, 7, 29],X2[16, 15, .., 11],X15[24, 18, 7, 29]

I considered independent as they incorporate different bits

I 14 dependent 10-bit projections from each, 28 in all

I two separable statistics independently distributed are used



How it Looks for One Projection

I projection h1:

X2[24, 18, 7, 29],X15[16, 15],X16[24, 18, 7, 29]

I K̄1 incorporates 20 unknowns

x63, x61, x60, x53, x46, x42, x39, x36, x31,

x30, x27, x26, x25, x22, x21, x12, x10, x7, x5,

x57 + x51 + x50 + x19 + x18 + x15 + x14

xi key-bits of 56-bit DES key

I For each value K̄1 = k1 the value of S1(k1) is kept

I 220 values



LLR1-values for h1

I n = 241.8, expected LLR1 for correct K̄1 = k1 is 4.6649, for
incorrect -4.6638

I Experimental value for correct key 2.2668

I 23370 values higher than that

I Similar picture for other 27 projections hi



Constructing Search Tree

I Tj -sequence:

I T1 =< x2 >,T2 =< x2, x19 >,T3 =< x2, x19, x60 >,..

I x2 appears in 14(maximal number) of K̄i , etc

x2, x19, x60, x34, x10, x17, x59, x36, x42, x27, x25,

x52, x11, x33, x51, x9, x23, x28, x5, x55, x46, x22,

x62, x15, x37, x47, x7, x54, x39, x31, x29, x20, x61,

x63, x30, x38, x26, x50, x1, x57, x18, x14, x35, x44,

x3, x21, x41, x13, x4, x45, x53, x6, x12, x43



Search Tree Complexity

I plain-texts n = 241.8, success rate 0.85

I in fig. examined values of Tj(tree nodes), j = 38, ..54, log2

scale

I # K̄ -candidates is 239.8, # key to brute force n = 241.8

I overall number of nodes is 245.5 << 254. Constructing the
nodes is faster(at least in bit operations) than brute force

I improvement over Matsui’s result on DES(n = 243, 0.85)



Possible Improvements

I Use another statistics for projections hi . Let K̄0i ⊂ K̄i

I e.g., key-bits K̄0i affect the distribution, then

LLR∗i (K̄i \ K̄0i ) = max
K0i

LLRi (K̄i )

I In practice better, in line with Matsui’s analysis

I However the distribution of

(LLR∗1 , . . . , LLR
∗
m)

is not well understood. Success probability is difficult to
predict

I Experimentally for a truncated cipher and extrapolate?



Conclusions

I A method of computing joint distribution of encryption
internal bites X ,Y is presented

I We have realised that Multivariate Linear Analysis and its
variations are inefficient for large X ,Y . A solution to this
problem is suggested

I based on a new statistic which reflects round function
structure and a new search algorithm to find key-candidates
which fall into critical region

I The method was applied to DES, gave an improvement over
Matsui’s results

I We were able to predict correctly success probability(8-round
DES) and the number of final key-candidates(16-round DES)

I Complexity of the search algorithm is 103 times faster than
brute force over all sub-keys which affect the statistic


